Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 4 de 4
Фильтр
1.
Antiviral Res ; 214: 105609, 2023 06.
Статья в английский | MEDLINE | ID: covidwho-2293412

Реферат

Ongoing emergence of SARS-CoV-2 Omicron subvariants and their rapid worldwide spread pose a threat to public health. From November 2022 to February 2023, newly emerged Omicron subvariants, including BQ.1.1, BF.7, BA.5.2, XBB.1, XBB.1.5, and BN.1.9, became prevalent global strains (>5% global prevalence). These Omicron subvariants are resistant to several therapeutic antibodies. Thus, the antiviral activity of current drugs such as remdesivir, molnupiravir, and nirmatrelvir, which target highly conserved regions of SARS-CoV-2, against newly emerged Omicron subvariants need to be evaluated. We assessed the antiviral efficacy of the drugs using the half-maximal inhibitory concentration (IC50) against human isolates of 23 Omicron subvariants and four former SARS-CoV-2 variants of concern (VOCs) and compared it with the antiviral efficacy of these drugs against the SARS-CoV-2 reference strain (hCoV/Korea/KCDC03/2020). Maximal IC50-fold changes of remdesivir, molnupiravir, and nirmatrelvir were 1.9 (BA.2.75.2), 1.2 (B.1.627.2), and 1.4 (BA.2.3), respectively, compared to median IC50 values of the reference strain. Moreover, median IC50-fold changes of remdesivir, molnupiravir, and nirmatrelvir against the Omicron variants were 0.96, 0.4, and 0.62, respectively, similar to the 1.02, 0.88, and 0.67, respectively, median IC50-fold changes for previous VOCs. Although K90R and P132H in Nsp 5, and P323L, A529V, G671S, V405F, and ins823D in Nsp 12 mutations were identified, these amino acid substitutions did not affect drug antiviral activity. These results indicate that current antivirals retain antiviral efficacy against newly emerged Omicron subvariants. It is important to continue active surveillance and testing of new variants for drug resistance to enable early identification of drug-resistant strains.


Тема - темы
COVID-19 , Humans , SARS-CoV-2 , Antiviral Agents/pharmacology , Lactams , Leucine , Nitriles
2.
iScience ; 25(12): 105571, 2022 Dec 22.
Статья в английский | MEDLINE | ID: covidwho-2105157

Реферат

With the continuous emergence of highly transmissible SARS-CoV-2 variants, the comparison of their infectivity has become a critical issue for public health. However, a direct assessment of the viral characteristic has been challenging because of the lack of appropriate experimental models and efficient methods. Here, we integrated human alveolar organoids and single-cell transcriptome sequencing to facilitate the evaluation. In a proof-of-concept study with four highly transmissible SARS-CoV-2 variants, including GR (B.1.1.119), Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (BA.1), a rapid evaluation of the relative infectivity was possible. Our system demonstrates that the Omicron variant is 5- to 7-fold more infectious to human alveolar cells than the other SARS-CoV-2 variants at the initial stage of infection. To our knowledge, for the first time, this study measures the relative infectivity of the Omicron variant under multiple virus co-infection and provides new experimental procedures that can be applied to monitor emerging viral variants.

3.
J Extracell Vesicles ; 11(1): e12179, 2022 01.
Статья в английский | MEDLINE | ID: covidwho-1605805

Реферат

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is mediated by the interaction of the viral spike (S) protein with angiotensin-converting enzyme 2 (ACE2) on the host cell surface. Although a clinical trial testing soluble ACE2 (sACE2) for COVID-19 is currently ongoing, our understanding of the delivery of sACE2 via small extracellular vesicles (sEVs) is still rudimentary. With excellent biocompatibility allowing for the effective delivery of molecular cargos, sEVs are broadly studied as nanoscale protein carriers. In order to exploit the potential of sEVs, we design truncated CD9 scaffolds to display sACE2 on the sEV surface as a decoy receptor for the S protein of SARS-CoV-2. Moreover, to enhance the sACE2-S binding interaction, we employ sACE2 variants. sACE2-loaded sEVs exhibit typical sEVs characteristics and bind to the S protein. Furthermore, engineered sEVs inhibit the entry of wild-type (WT), the globally dominant D614G variant, Beta (K417N-E484K-N501Y) variant, and Delta (L452R-T478K-D614G) variant SARS-CoV-2 pseudovirus, and protect against authentic SARS-CoV-2 and Delta variant infection. Of note, sACE2 variants harbouring sEVs show superior antiviral efficacy than WT sACE2 loaded sEVs. Therapeutic efficacy of the engineered sEVs against SARS-CoV-2 challenge was confirmed using K18-hACE2 mice. The current findings provide opportunities for the development of new sEVs-based antiviral therapeutics.


Тема - темы
Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , Extracellular Vesicles/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Female , HEK293 Cells , Humans , Mice , Protein Binding , Protein Interaction Domains and Motifs
4.
Sci Rep ; 10(1): 16200, 2020 10 01.
Статья в английский | MEDLINE | ID: covidwho-811548

Реферат

The current coronavirus (COVID-19) pandemic is exacerbated by the absence of effective therapeutic agents. Notably, patients with COVID-19 and comorbidities such as hypertension and cardiac diseases have a higher mortality rate. An efficient strategy in response to this issue is repurposing drugs with antiviral activity for therapeutic effect. Digoxin (DIG) and ouabain (OUA) are FDA drugs for heart diseases that have antiviral activity against several coronaviruses. Thus, we aimed to assess antiviral activity of DIG and OUA against SARS-CoV-2 infection. The half-maximal inhibitory concentrations (IC50) of DIG and OUA were determined at a nanomolar concentration. Progeny virus titers of single-dose treatment of DIG, OUA and remdesivir were approximately 103-, 104- and 103-fold lower (> 99% inhibition), respectively, than that of non-treated control or chloroquine at 48 h post-infection (hpi). Furthermore, therapeutic treatment with DIG and OUA inhibited over 99% of SARS-CoV-2 replication, leading to viral inhibition at the post entry stage of the viral life cycle. Collectively, these results suggest that DIG and OUA may be an alternative treatment for COVID-19, with potential additional therapeutic effects for patients with cardiovascular disease.


Тема - темы
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Digoxin/pharmacology , Ouabain/pharmacology , Virus Replication , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Betacoronavirus/physiology , Chlorocebus aethiops , Chloroquine/pharmacology , Inhibitory Concentration 50 , SARS-CoV-2 , Vero Cells
Критерии поиска